

Branch : MBA

Semester : 3rd

Subject Name : DATA VISUALIZATION

Subject Code : BAY-1

Faculty Name : AVI BRAMHBHATT

Index

UNIT-1 GETTING STARTED WITH TABLEAU

1.1	Introduction to Tableau	
	1.1 What is Tableau	5
	1.1.2 Purpose and importance of Tableau	5
	1.1.3 Tableau Interface- first look	5
	1.1.4 Basic Workflow in Tableau	6
1.2	Dimensions vs. Continuous Fields	6
	1.2.1 Concept	6
	1.2.2 Detailed Explanation	7
	1.2.3 Example in Practice	7
	1.2.4 Importance and Distinguishing between them	7
1.3	Discrete vs Continuous Fields	7
	1.3.1 Discrete	8
	1.3.2 Continuous	8
	1.3.3 Difference Summary	9
	1.3.4 Conceptual Understanding	9
1.4	Application of Discrete & Continuous Fields	9
	1.4.1 Using Discrete Fields	9
	1.4.2 Using Continuous Fields	10
	1.4.3 Combination of Discrete & Continuous Fields	10
	1.4.4 Practical Benefits	10
1.5	Aggregation in Tableau	10
The last	1.5.1 Meaning of Aggregation	10
X	1.5.2 Common Aggregation functions in Tableau	11
	1.5.3 Default Aggregation	11
	1.5.4 Example of Aggregation	11
	1.5.5 Changing Aggregation type	12
	1.5.6 Why Aggregation matters	12

UNBEATABLE PLACEMENTS

1.6 Summary of Concepts	12
1.7 Key Points to Remember	12
UNIT- 2 WORKING WITH METADATA AND DATA OPERA	ΓΙΟΝS IN TABLEA
2. Working with Metadata	14
2.1 What is Metadata in Tableau?	14
2.2 Components of Metadata	14
2.3 Editing Metadata	14
2.4 Metadata Management best practice	14
2.2 Filters in Tableau	15
2.2.1 What is Filter	15
2.2.2 Types of Filters in Tableau	15
2.3 Applying a Filter	16
2.4 Context Filters	16
2.5 Filter Order of Operations	16
2.6 Filter Presentation options	16
2.7 Applying Analytics to the worksheet	
2.7.1 Purpose	17
2.7.2 Common Analytical Features	17
2.7.3 How to apply analytics	17
2.7.4 Example of Visualization	17
2.7.5 Analytical Insights supported by tableau	18
2.8 Dashboard in Tableau	
2.8.1 Definition	18
2.8.2 Components of a Dashboard	18
2.8.3 Creating a Dashboard	18
2.8.4 Example Use case	19
2.8.5 Dashboard best practices	19

UNBEATABLE PLACEMENTS

	r LACE
2.9 Modifications to Data Connections	19
2.9.1 What is Data Connections	19
2.9.2 Modifying Data Connections	19
2.10 Edit Data Source	20
2.11 Unions, Joins & Data Blending	20
2.11.1 Difference between Join & Data Blending	21
2.12 Summary	21
Suggested Books	22

UNIT – 1

GETTING STARTED WITH TABLEAU

1 Introduction – Getting Started with Tableau

1.1 What is Tableau?

Tableau is a powerful **Business Intelligence** (**BI**) and **Data Visualization** tool that enables users to analyze and represent data visually through charts, graphs, and dashboards.

Its primary purpose is to help individuals and organizations "see and understand their data."

Instead of relying on static spreadsheets or complex programming, Tableau allows **interactive exploration** of data through a simple **drag-and-drop interface**.

1.1.2 Purpose and Importance of Tableau

Tableau bridges the gap between **raw data** and **decision-making**. It transforms complex numerical tables into intuitive visuals such as bar graphs, line charts, heat maps, and geographic maps.

Feature	Explanation / Benefit		
Ease of use	Drag-and-drop interface requires no coding knowledge.		
Fast analysis	Processes large datasets quickly.		
Data connectivity	Connects to Excel, databases, and online data sources.		
Interactive	Enables filters, tooltips, and dashboards for dynamic		
visualization	analysis.		
Sharing	Dashboards can be shared via Tableau Server, Tableau Online, or Tableau Public.		

1.1.3 Tableau Interface – First Look

When Tableau Desktop opens, you see:

- Start page: Connects to data (Excel, CSV, SQL, etc.)
- Data pane: Lists all fields (Dimensions & Measures).
- Shelves: Rows, Columns, Filters, Marks, etc.

- View area (Canvas): Where the visualization is displayed.
- Show Me panel: Suggests chart types based on selected data.

1.1.4 Basic Workflow in Tableau

- 1. **Connect to Data** import from Excel or database.
- 2. **Understand Fields** identify dimensions and measures.
- 3. **Drag & Drop** place fields on Rows/Columns shelves.
- 4. **Choose Visualization Type** bar, line, pie, etc.
- 5. **Refine View** add colors, filters, labels, or tooltips.
- 6. **Save / Share** publish dashboard or workbook.

1.2 <u>Dimensions vs Measures</u>

Criteria	Dimensions	Measures
Type of Data	Contain Qualitative data	Contain Quantitative data
Nature	Independent variables	Dependent variables
Aggregation	Cannot be directly aggregated	Can be aggregated
Position in Data Pane	They occupy the Top half	They occupy the Bottom half
Visual Representation	Most of the time they are Discrete fields, they create Headers/ Labels in a view and are displayed as Blue pills	Most of the time they are Continuous fields, they create Axis/ Axes in a view and are displayed as Green pills
Role in Analysis	Define the WHO, WHAT, WHERE & WHEN of the data	Define the HOW MUCH of the data
Typical Examples	Customer Name (Name), Order ID (IDs), Country (Geographical)	Sales, Profit (Numeric Values), Profit Ratio (Ratios), Discount (Average or Percentages)

1.2.1 Concept

All data fields used in Tableau belong to one of two main categories:

	Dimensions	Measures
Nature	Qualitative (descriptive)	Quantitative (numeric)
Purpose	Describe, group, or categorize data	Perform mathematical calculations
Aggregation	Not aggregated	Always aggregated (e.g., SUM, AVG)
Example	Region, Product Name, Category	Sales, Profit, Quantity

Dimensions

Measures

Defines numeric value

Effect in

Defines level of detail (what we (how much)

Visualization are analyzing)

1.2.2 <u>Detailed Explanation</u>

- **Dimensions** are *discrete attributes*—they divide the data into groups or categories.
 - Example: "Region" divides the dataset into East, West, North, and South.
- **Measures** are *quantitative metrics* that Tableau can aggregate (add, average, etc.).
 - o Example: "Sales" or "Profit" is aggregated per region.

1.2.3 Example in Practice

Dataset snippet:

Region Product Sales Profit

East Laptop 30000 2000 West Printer 20000 1200 South Tablet 15000 800

In Tableau:

- **Region** \rightarrow Dimension (x-axis)
- Sales → Measure (y-axis)
 - → Bar chart of total Sales per Region.

1.2.4 <u>Importance of Distinguishing Between Them</u>

- Ensures correct aggregation and visual type.
- Avoids misinterpretation (e.g., average profit vs. total profit).
- Provides **granularity control**: you can view data by Region, then by Product Category, etc.

1.3 <u>Discrete vs Continuous Fields</u>

Every field in Tableau—whether a Dimension or a Measure—is also classified as **Discrete** or **Continuous.**

Discrete vs Continuous in Tableau Software

DISCRETE FIELD	CONTINUOUS FIELD
Individually Separate	Unbroken Whole
Represented by Blue pill	Represented by Green pill
Can filter individual elements	Can filter only by range
Countable	Measurable
Becomes header in a view	Becomes axis in a view
Brings level of detail (or detail) to view	Brings aggregate to view
Can have hierarchy	Cannot have hierarchy
Can be sorted	Cannot be sorted

1.3.1 Discrete (Blue Pills)

- Contain separate, distinct values.
- Represent categories or labels.
- Create **headers** in a view (no numeric axis).
- Displayed as **blue** fields in Tableau.

Examples

- Region → East, West, North, South
- Category → Furniture, Technology, Office Supplies
- Order ID, Customer Segment

Visualization Example:

A *bar chart* where each bar represents one Region is created using a **discrete** field.

1.3.2 Continuous (Green Pills)

- Represent numerical or temporal ranges.
- Have infinite possible values within an interval.
- Create **axes** (with continuous scale).

• Displayed as green fields in Tableau.

Examples

- Sales $(\ge 0 \rightarrow \ge \infty)$
- Profit % $(-100 \rightarrow 100)$
- Order Date (used as a timeline)

Visualization Example:

A line chart showing "Sales over Time" uses Order Date as a continuous field.

1.3.3 Difference Summary

Feature Discrete Field Continuous Field

Color Code Blue Green

Values Distinct, separate Range, uninterrupted

Displayed As Headers Axes

Common Use Category comparison Trend or distribution

Example Field Region Sales, Order Date

1.3.4 Conceptual Understanding

- Discrete = "Countable" (e.g., number of regions).
- Continuous = "Measurable" (e.g., amount of sales).

(For visual reference, search "Tableau discrete continuous color chart" online; it shows blue vs green field examples.)

1.4 Application of Discrete and Continuous Fields

1.4.1 Using Discrete Fields

Scenario: A company wants to know how sales vary by Region.

- Dimension: Region (Discrete)
- Measure: Sales (Continuous)
 - → Visualization: Bar chart comparing total Sales for each Region.

Each Region appears as a **separate category** on the x-axis.

1.4.2 Using Continuous Fields

Scenario: Management wants to see the trend of sales growth.

- Dimension: Order Date (Continuous timeline)
- Measure: Sales
 - → Visualization: Line chart showing Sales over time.

The x-axis shows a **continuous date range** (Jan - Dec), and points are connected smoothly.

1.4.3 Combination of Discrete and Continuous

It is common to use both simultaneously.

Example:

"Sales Trend by Region"

- Order Date \rightarrow Continuous x-axis
- Region → Discrete color dimension
- Sales → Continuous y-axis

Result: Four colored trend lines, one per Region, on a continuous timeline.

1.4.4 Practical Benefits

- **Discrete fields**: Great for **categorical comparisons** (e.g., sales by region, category).
- Continuous fields: Ideal for trend and time-series analysis (e.g., profit over months).
- Combination enables multi-dimensional insights.

1.5 Aggregation in Tableau

1.5.1 Meaning of Aggregation

Aggregation is the process of **summarizing multiple data points** into a single representative value.

When a Measure is placed in the view, Tableau **automatically aggregates** it (by default \rightarrow SUM).

1.5.2 Common Aggregation Functions in Tableau

Function	Meaning	Example Use
SUM()	Adds all values	Total Sales per Region
AVG()	Finds mean value	e Average Profit per Customer
COUNT()	Counts records	Number of Orders
MIN()	Lowest value	Minimum Sales Value
MAX()	Highest value	Maximum Profit
MEDIAN()	Middle value	Median Order Value

1.5.3 <u>Default Aggregation</u>

- Tableau uses **SUM** automatically for most measures.
- You can change aggregation by right-clicking the measure → Measure
 (Sum) → select another (Average, Count, etc.).

1.5.4 Example of Aggregation

Dataset

Region Sales

East 10 000 East 12 000 West 8 000

Result after Aggregation:

- SUM(Sales) for East = $22\ 000$
- SUM(Sales) for West = 8000

In the bar chart:

- "East" bar = $22\ 000$
- "West" bar = 8000

1.5.5 Changing Aggregation Type

- Right-click on Sales → "Measure (Sum)" → choose AVG → Chart now shows average sales per region.
- Same data, different interpretation.

1.5.6 Why Aggregation Matters

- Reduces data size and simplifies visualization.
- Allows computation of Key Performance Indicators (KPIs) like Total Revenue, Average Order Value, etc.
- Enables comparisons between groups (e.g., average profit by region).

1.6 Summary of Concepts

Concept	Core Idea	Example / Output
Getting Started with Tableau	Connect data → Build visual → Share dashboard	Connect Excel "Sales.xlsx" and make bar chart
Dimensions vs Measures	Dimensions = categories; Measures = numerics	Region vs Sales
Discrete vs Continuous	Discrete (blue): headers; Continuous (green): axes	Sales by Region / Sales over Time
Applications	Combine discrete + continuous for multi-view analysis	Sales trend by Region
Aggregation	Summarizing data (SUM, AVG, COUNT, etc.)	SUM(Sales) per Category

1.7. Key Points to Remember

- Tableau fields = **Dimensions** + **Measures**.
- Blue pill = Discrete field, Green pill = Continuous field.
- Discrete \rightarrow creates categories; Continuous \rightarrow creates axes.
- Aggregation summarizes measure values; default is SUM.
- Tableau's workflow: Connect \rightarrow Analyze \rightarrow Visualize \rightarrow Share.

UNIT - 2

2. Working with Metadata

2.1 What is Metadata in Tableau?

Metadata refers to the "data about data" — in Tableau, it includes field names, data types, formats, roles, and structures that define how Tableau interprets the underlying dataset.

When you connect a dataset, Tableau automatically reads its metadata (field names, types, hierarchies) and displays it in the **Data Pane**.

2.2 Components of Metadata in Tableau

- 1. **Field Names** The names of columns or variables.
 - o Example: Order Date, Customer ID, Sales.
- 2. **Data Types** Define the kind of values a field holds:
 - o Text (ABC), Number (#), Date (Calendar icon), Boolean (T/F), Geographic (Globe icon).
- 3. **Field Roles** Whether the field is a *Dimension* or *Measure*.
- 4. **Field Properties** Default aggregation, number format, etc.
- 5. **Data Source Metadata Grid** View and edit field names, data types, and roles.

2.3 Editing Metadata

Tableau allows you to modify metadata without altering the original data source. You can:

- **Rename Fields:** Right-click a field \rightarrow *Rename* \rightarrow type a descriptive name.
- Change Data Type: Click field icon → choose correct type (e.g., Date instead of String).
- Change Role: Move a field between *Dimensions* and *Measures*.
- Create Aliases: Provide alternate display names for values (e.g., "N" \rightarrow "North").
- **Hide Fields:** Right-click \rightarrow *Hide* (to declutter the data pane).

Example:

Original column name: Cust_ID

Renamed in Tableau as: Customer ID (for readability).

2.4 Metadata Management Best Practices

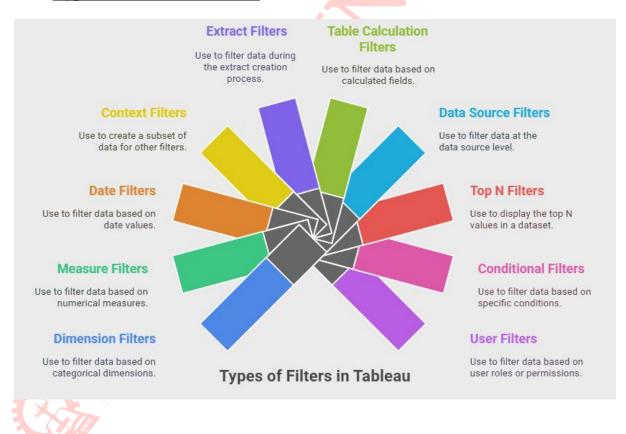
- Rename fields to business-friendly terms.
- Set correct data types early (e.g., avoid treating numbers as text).
- Hide unused fields to simplify the view.

- Create hierarchies (e.g., Country \rightarrow State \rightarrow City).
- Document field meanings for consistency.

2.2 Filters in Tableau

Filters help focus analysis by limiting the data visible in the worksheet or dashboard.

2.2.1 What is a Filter?


A **filter** removes unwanted data from the view, allowing analysis of only relevant information.

It acts like a query condition applied to visualizations.

Example:

View only "Sales in South Region" or "Orders between Jan-Mar 2024."

2.2.2 Types of Filters in Tableau

Filter Type Applies To

Example / Use Case

Filter Type	Applies To	Example / Use Case
Extract Filters	Data Extract	Include only 2024 data during extraction.
Data Source Filters	Whole Data Source	Restrict analysis to "India" region.
Context Filters	Base filter for others	Filter first by Region, then by Category.
Dimension Filters	Categorical fields	View only Furniture or Technology category.
Measure Filters	Numerical values	Show records where Sales > ₹10,000.
Top N Filters	Rank-based filtering	Display Top 10 Customers by Sales.
Relative Date Filters	Time-based	View last 3 months of data dynamically.

2.3 Applying a Filter

- 1. Drag a field (e.g., Region) \rightarrow **Filters Shelf.**
- 2. Choose filter type (e.g., *Select Values*).
- 3. Click **Show Filter** to display it as a dropdown on the worksheet.

Example:

- Drag Category \rightarrow Filters \rightarrow select Furniture, Office Supplies.
- The view now only displays those categories.

2.4 Context Filters (Important)

- A **context filter** acts as a *primary filter* that defines a subset of data for other filters to act on.
- Use when applying multiple dependent filters.

Example:

Filter 1 (Context): Region = South

Filter 2 (Dependent): Top 5 Products by Sales → Applies only to the South region.

2.5 Filter Order of Operations

- 1. Extract Filter
- 2. Data Source Filter
- 3. Context Filter
- 4. Dimension Filter
- 5. Measure Filter

2.6 Filter Presentation Options

- Dropdown Menu
- Checkboxes
- Slider (for range filters)
- Date Picker
- Search box

These make dashboards interactive.

2.7.1 Purpose

Once data is visualized, Tableau allows analytical tools to be applied directly to the **worksheet** for deeper insights.

2.7.2 Common Analytical Features

Feature	Description	Example
Reference	Add static line showing average or target	Add "Average Sales" line to bar
Line	value.	chart.
Trend Line	Show direction or trend over time (linear, exponential).	Sales growth over months.
Forecast	Predict future values based on patterns.	Forecast next 6 months' sales.
Average Line	Show mean of all values visually.	Average profit per region.
Box Plot	Visualize data distribution and outliers.	Profit distribution per product category.
Cluster Analysis	Group similar data points.	Segment customers by purchasing patterns.

2.7.3 How to Apply Analytics

- 1. Open a worksheet.
- 2. Go to Analytics Pane (next to Data Pane).
- 3. Drag analytics option (e.g., Trend Line, Average Line) onto the view.
- 4. Configure settings (e.g., linear regression, forecast period).

Example:

Drag "Trend Line" \rightarrow drop it on "Sales over Time" line chart \rightarrow Tableau fits a regression line showing trend.

2.7.4 Example Visualization

Scenario: An analyst wants to forecast sales for upcoming months.

Steps:

- 1. Create line chart: Order Date (Continuous) vs Sales (Sum).
- 2. Drag Forecast from Analytics Pane.
- 3. Tableau projects future values and shows confidence intervals.

2.7.5 Analytical Insights Supported by Tableau

- **Descriptive Analysis:** What happened? (e.g., Sales by Region)
- **Diagnostic Analysis:** Why did it happen? (e.g., Profit by Discount Rate)
- **Predictive Analysis:** What will happen? (Forecasting trends)
- Prescriptive Analysis: What should we do? (Scenario-based visualization)

2.8. Dashboard in Tableau

2.8.1 Definition

A **Dashboard** is a **collection of multiple worksheets** and visuals displayed together on a single canvas to present a unified story or analysis.

2.8.2 Components of a Dashboard

- Sheets: Individual charts or maps.
- **Text and Images:** For titles or explanations.
- **Filters:** To make the dashboard interactive.
- **Containers:** Organize layout (horizontal or vertical).
- Actions: Add interactivity (filter, highlight, URL).

2.8.3 Creating a Dashboard

Steps:

- 1. Click the **Dashboard tab** \rightarrow New Dashboard.
- 2. Drag required worksheets into the dashboard area.
- 3. Adjust layout and size.
- 4. Add filters, legends, and text boxes.
- 5. Add interactivity (Dashboard \rightarrow Actions \rightarrow Filter / Highlight).
- 6. Save or publish.

2.8.4 Example Use Case

A "Sales Performance Dashboard" may contain:

- Map showing Sales by State.
- Bar chart showing *Top 10 Products*.
- Line chart showing Sales Trend over Time.
- Filter for *Region* or *Category*.

(Search "Tableau Superstore Dashboard example" online to view visuals.)

2.8.5 Dashboard Best Practices

- Maintain a clean and consistent design.
- Use interactive filters for better user control.
- Keep color schemes meaningful and minimal.
- Use titles, legends, and tooltips for clarity.
- Ensure responsiveness for different screen sizes.

2.9. Modifications to Data Connections

2.9.1 What is a Data Connection?

When you connect Tableau to a file or database, a data connection defines the link between Tableau and the source.

Sometimes, analysts need to modify connections (e.g., change data source, update schema, or add new tables).

2.9.2 Modifying Data Connections

- 1. Change Data Source:
 - \circ Go to Data \rightarrow Replace Data Source.
 - O Useful when the same structure data comes from a new file.
- 2. Refresh Connection:
 - \bigcirc Data \rightarrow Refresh All Extracts to update data.
- 3. Edit Connection:
 - o Right-click data source \rightarrow *Edit Connection* \rightarrow change path or database credentials.
- 4. Add New Tables or Fields:
 - \circ Reopen connection editor \rightarrow drag new tables or join additional data.

Example:

Replacing "Sales 2024.xlsx" with "Sales 2025.xlsx" while maintaining same fields.

2.10. Edit Data Source

2.10.1 Purpose

To clean or customize how Tableau reads and uses data from the source.

Steps

- 1. Go to *Data* menu \rightarrow select your data source \rightarrow *Edit Data Source*.
- 2. You'll enter the **Data Source Page**, showing tables, joins, and data preview.
- 3. You can:
 - o Rename fields
 - o Change data types
 - o Create calculated fields
 - o Hide unused columns
 - Manage joins/unions

Example

If a column named $Cust_ID$ is numeric but used as text, change its type to "String." Right-click \rightarrow Change Data Type \rightarrow String.

2.11. Unions, Joins, and Data Blending

These are **methods to combine data** from multiple tables or data sources.

Unions

Definition:

A Union appends (stacks) data from multiple tables with the same structure (same columns).

Example:

Table 1 (Sales_Jan) Table 2 (Sales_Feb)

OrderID Sales

After Union → Combined table with both months' data.

☐ In Tableau:

Data Source Page \rightarrow drag one table \rightarrow drop another below it \rightarrow choose *Union*.

Use When: You have monthly or quarterly files with identical structure.

Joins

Definition:

A **Join** combines tables **horizontally** based on a **common field** (**key**) like Customer ID or Order ID.

Types of Joins:

<u>Join Type</u>	Description	Result Example
Inner Join	Returns only matching records in both tables.	Customers who placed orders.
Left Join	All records from left table + matching ones from right.	All customers + their orders (null if none).
Right Join	All from right + matching from left.	All orders + customer data if available.
Full Outer Join	All records from both, matching or not.	Complete data union.

Example:

Joining "Customer Table" and "Orders Table" on Customer ID.

Data Blending

Definition:

Data Blending combines **data from different sources** (e.g., Excel + SQL) that can't be joined directly.

How it Works:

- One data source is the **Primary** (blue checkmark).
- The other is the **Secondary** (orange link icon).
- Linked through a **common field** (like Customer ID).

Example:

- Excel file: Customer Info
- SQL database: Sales Transactions
 - \rightarrow Blend using *Customer ID* as common field.

Use Case:

Compare "Actual Sales (SQL)" with "Sales Targets (Excel)."

2.11.1 Difference Between Join and Data Blending

Aspect Join **Data Blending**

Data Source Same source Different sources Row-level combination Aggregated level Level **Performance** Faster Slightly slower

Use When Tables in same database Data across systems (Excel + SQL)

2.12. Summary

Topic Core Idea / Function

Working with Metadata Adjust field names, types, and roles for clarity.


Restrict data shown in view (Dimension, Measure, Context). **Filters** Add reference lines, trend lines, and forecasts for insights. **Applying Analytics**

Dashboard Combine multiple views into one interactive canvas.

Modify Data Connections Update or replace data sources and tables. **Edit Data Source** Clean or adjust fields, joins, and metadata.

Unions Append rows from similar tables.

Joins Merge tables based on keys. Combine multiple data sources. **Data Blending**

SUGGESTED BOOKS

- 1. Data Visualization with Tableau by Praveen Kumar
- 2. Tableau 10.0 Best Practices by Jenny Zhang

